2013 International Symposium on Extreme Ultraviolet Lithography

Toyama, Japan • 6 - 10 October, 2013

EUV mask imaging system based on the scanning reflective microscopy

Seong-Sue Kim, Donggun Lee, Jongju Park, Eokbong Kim, Chan-Uk Jeon, Hanku Cho, Byeonghwan Jeon, Changhoon choi (Samsung), Chris Anderson, Ryan Myakawa, and Patrick Naulleau (LBNL)

October 9, 2013

Introduction

- In fabricating EUV mask, the printability review of the phase defects is a necessary step and it's possible only by an actinic imaging tool.
- Previously a timing gap was expected between the HVM scanner and the commercialized mask imaging tool.
- A bridge tool was developed to fill the gap based on the scanning reflective microscopy using the highharmonic EUV source and the zone plate optics.

Why zone plate?

 The full field imaging system with a plasma source and mirror optics is too expensive and needs a long lead time for a bridge tool purpose.

→ The zone plate optics was considered to be an alternative

option.

Why high harmonic EUV source?

- In order to use a zone plate for full field imaging an EUV source with extremely narrow spectral bandwidth is needed.
- The synchrotron beam filtered by a monochrometer satisfies the spectral bandwidth spec., but for the manufacturing purposes a stand-alone source is required.
- → Among the available stand-alone EUV sources high harmonic has the most narrow spectral bandwidth.

Why scanning?

- The high harmonic EUV source is both monochromatic and stand-alone, but the spectral bandwidth is too large to be used for a full field imaging and the power is too small to be filtered by a monochrometer.
- → But in the scanning-type imaging system using on-axis focused beam, the off-axis aberration can be mitigated and consequently the spectral bandwidth requirement can be reduced significantly.

Scanning EUV reflective microscopy

Scanning EUV reflective microscopy(SERM)

Scanning EUV Reflection Microscopy(SERM)

"US8335038, by *Dong-Gun Lee et al*"

Focused beam spot (PSF of scanner)

Scanning(convolution)

Mask pattern with a phase defect

Outline of the tool development

- The zone plate optics was designed and fabricated by LBNL.
- The high harmonic source was developed by Samsung and FST using COHERENT Ti:Sapphire femtosecond laser($\lambda = 800$ nm, pulse width= 46fs) and the whole system was integrated by Samsung.

Configuration of the high harmonic source

Ti:Sapphire femtosecond drive laser(λ =800nm, 46fs)

High Harmonic Generation

High harmonic EUV photon generation

• By the highly intense($10^{14} \sim 10^{15}$ W/cm²) IR femtosecond laser electrons are ionized, accelerated coherently, and recombined to generate the EUV light(59-th harmonic).

Characteristics of the high harmonic source

Zone plate optics

- A free-standing elliptical zone plate with NA = 0.35(4X) and $f=533\mu m$ was fabricated.
- All diffraction order radiations other than the 1st order are blocked by the order sorting aperture(OSA) to enhance the contrast.

Zone plate optics with an OSA

Elliptical zone plate with 6° CRA

Optics package

Characteristics of the zone plate

- The wavefront error of the zone plate: λ/20
 (illuminated by the high harmonic source and measured by the 2D grating shear Interferometer)
- Focused beam spot reconstructed from the wavefront: 84nm(FWHM)
 - diffraction limited

2D grating shear Interferogram

Scanning stage system

- Hybrid scanning stage is applied to construct an aerial image from the focused beam spot.
- The position of the stage at each image acquisition point is measured by an interferometer and used in the image reconstruction.

EUV mask imaging system

Results: Pattern image

√The major sources of the LWR are the low source power(shot noise),
the mask LWR, and presumably mask surface roughness.

Results: Phase defect images

Phase defect imaging sensitivity(programmed pit defect)

Defect size (SEVD)	58nm	47nm	37nm	26nm	21nm
Defect image					

Focus behavior of the phase defect(28nm-SEVD native bump defect)

Defocus	-1.3μm	-0.7μm	0μm	0.7 μm	1.3μm
Defect image					

Results: Phase defect in a patterned mask

Mask SEM Image

Wafer SEM Image

Mask actinic Image

✓Phase defect printability on a wafer is reproduced successfully in the actinic image by this tool.

Application

- This tool can be used for
 - Review of phase defect printability for both patterned mask and
 ML blank
 - ✓ CD verification after repair of both pattern and phase defects
 - ✓ Studies on the surface roughness effect etc...
- Once commercial EUV mask imaging tool is installed for HVM, this tool can be upgraded to be a high-NA system, which is possible by simply changing the zone plate and the bending mirror.

Summary

- Using the concept of the scanning EUV reflective microscopy an EUV mask aerial imaging system was developed.
- An aberration-free($< \lambda/67$) high harmonic EUV source was developed using a femtosecond IR laser and a gas cell.
- A free-standing elliptic zone plate optics was developed and a diffraction-free beam spot was obtained.
- Reviewing capability of the phase defects less than SEVD-21nm were confirmed and the defect printability on the wafer pattern is reproduced successfully.
- This tool will be used for reviewing phase defect printability and upgraded for high-NA EUV studies.

Acknowledgement

I'd like to thank Prof. David Attwood who encouraged me to apply the high harmonic EUV source in developing EUV mask imaging system.

